Старушенко Галина Аркадіївна
кандидат технічних наук, професор
професор кафедри державного управління і місцевого самоврядування
Національний технічний університет «Дніпровська політехніка» (Дніпро, Україна).
ORCID 0000-0003-4331-4723
Researcher ID AAZ-9981-2021
Scopus ID 6506658321
ResearchGate: https://www.researchgate.net/profile/Galina-Starushenko/scores?ev=prf_rep_tab
Google Scholar: https://scholar.google.com.ua/citations?view_op=list_works&hl=ru&hl=ru&user=n3QVhmIAAAAJ
Основні наукові напрямки: статистичні методи в публічному управлінні, математичне моделювання економічної діяльності, економіко-математичні методи дослідження суспільних процесів, цифрові методи і моделі оптимізації публічно-управлінських рішень.
188 наукових і навчально-методичних праць, у тому числі:
реферованих у Scopus – 32 публікації;
включених до наукометричної бази Web of Science Core Collection – 31 публікація.
Scopus
Andrianov V., Starushenko G. A. Application of the averaging method for the calculation of perforated plates. – Soviet Applied Mechanics, 1988. – Vol. 24. –Is. 4. – P. 410-415.
V. Andrianov and G. A. Starushenko. Solution of Dynamic Problem for Perforated Structures by the Method of Averaging. – Journal of Soviet Mathematics. – New York, 1991, v. 57, N 5, p. 3410-3412.
Andrianov I. V., Starushenko G. A. Application of the averaging method to the study of oscillations of a perforated plate. – Journal of Soviet Mathematics. – New York, 1993, v. 65, N 2, p. 1503-1507.
Пилипчук В. Н., Старушенко Г. А. Об одном варианте негладких преобразований переменных для одномерных упругих систем периодической структуры. – Прикладная математика и механика, 1997, т. 61, вып. 2, с. 275-284.
Pilipchuk V. N., Starushenko G. A. A version of non-smooth transformations for one-dimensional elastic systems with a periodic structure. – Journal of Applied Mathematics and Mechanics, 1997. – Vol. 61. – Is. 2. – P. 265 – 274.
Andrianov I. V., Starushenko G. A., Tokarzewski S. Homogenization procedure and Pade approximations in the theory of composite materials with parallelepiped inclusions. – International Journal of Heat and Mass Transfer, 1998, Vol. 41, No. 1, p. 175-181.
Andrianov I. V., Starushenko G. A., Danishevskii V. V. Asymptotic determination of the effective thermal conductivity of a pile field. – Soil Mechanics and Foundation Engineering, 1999, Vol. 36, Is. 1, p. 31-36.
Andrianov I. V., Starushenko G. A., Danishevskyy V. V., Tokarzewski S. Homogenization procedure and Pade approximants for effective heat conductivity of composite materials with cylindrical inclusions having square cross-section. – Proceeding of Royal Society of London, A, 1999. – Vol. 455. – No. 1989, p. 3401-3413.
Pilipchuk V. N., Volkova S. A., Starushenko G. A. Study of a non-linear oscillator under parametric impulsive excitation using a non-smooth temporal transformation. – Journal of Sound and Vibration, 1999. – Vol. 222 (2). – P. 307-328.
Tokarzewski S., Andrianov I., Danishevsky V., Starushenko G. Analytical continuation of asymptotic expansions of effective transport coefficients by Pade approximants. – Nonlinear Analysis: Theory, Methods & Applications. – 2001. – Vol. 47. – Is. 4. – P. 2283-2292.
Starushenko G., Krulik N., Tokarzewski S. Employment of non-symmetrical saw-tooth argument transformation method in the elasticity theory for layered composites. – International Journal of Heat and Mass Transfer, 2002. – Vol. 45. – Is. 14. – P. 3055 – 3060.
Andrianov I. V., Starushenko G. A., Weichert D. Asymptotic analysis of thin interface in composite materials with coated boundary. – Technische Mechanik. – 31. – Is. 1. – 2011. – P. 33-41.
Andrianov I. V., Starushenko G. A., Weicher D. Numerical investigation of 1D continuum dynamical models of discrete chain. – ZAMM / Z. Angew. Math. Mech., 2012. – 92. – Is. 11-12. – P. 945-954.
Andrianov I. V., Kalamkarov L., Starushenko G. A. Three-phase model for a fiber-reinforced composite material. – Composite Structures, 2013. – Vol. 95. – P. 95-104.
Andrianov I. V., Awrejcewicz J., Starushenko G. A. Application of an improved three-phase model to calculate effective characteristics for a composite with cylindrical inclusions. – Latin American Journal of Solids and Structures, 2013. – 10. – No 1. – P. 197-222.
Andrianov I. V., Kalamkarov A. L., Starushenko A. Analytical expressions for effective thermal conductivity of composite materials with inclusions of square cross-section. – Composites Part B: Engineering, 2013. – Vol. 50. – P. 44-53.
Kalamkarov L., Andrianov I. V., Starushenko G. A. Three-phase model for a composite material with cylindrical circular inclusions. Part I: Application of the boundary shape perturbation method. – International Journal of Engineering Science, 2014. – Vol. 78. – P. 154-177.
Kalamkarov L., Andrianov I. V., Starushenko G. A. Three-phase model for a composite material with cylindrical circular inclusions. Part II: Application of Padé approximants. – International Journal of Engineering Science, 2014. – Vol. 78. – P. 178-191.
Andrianov I., Awrejcewicz J., Starushenko G. A. Asymptotic analysis of the Maxwell Garnett formula using the two-phase composite model. – International Journal of Applied Mechanics, 2015. – Vol. 7. – Is. 2. – P. 1550025-1 – 1550025-27. – 27 p.
Gluzman S., Mityushev V., Nawalaniec W., Starushenko G. Effective Conductivity and Critical Properties of a Hexagonal Array of Superconducting Cylinders (Book Chapter) // In the book “Contributions in Mathematics and Engineering. In Honor of Constantin Carathéodory” ; Eds. M. Pardalos, T. M. Rassias. – Springer International Publishing Switzerland, 2016. – 759 p. – P. 255-297.
Andrianov I. V., Awrejcewicz J., Markert B., Starushenko G. A. Analytical homogenization for dynamic analysis of composite membranes with circular inclusions in hexagonal lattice structures. – International Journal of Structural Stability and Dynamics, 2017. – Vol. 17. – No. 5. – P. 1740015-1 – 1740015-14.
Andrianov I. V., Awrejcewicz J., Starushenko G. A. Asymptotic models and transport properties of densely packed, high-contrast fibre composites. Part I: Square lattice of circular – Composite Structures, 2017. – Vol. 179. – P. 617 – 627.
Andrianov I. V., Awrejcewicz J., Starushenko G. A. Asymptotic models for transport properties of densely packed, high-contrast fibre composites. Part II: Square lattices of rhombic inclusions and hexagonal lattices of circular inclusions. – Composite Structures, – Vol. 180. – P. 351 – 359.
Andrianov I. V., Starushenko G. A., Gabrinets A. Percolation threshold for elastic problems: self-consistent approach and Padé approximants. – Advances in Mechanics of Microstructured Media and Structures,Advanced Structured Materials. – Springer International Publishing AG, part of Springer Nature; F. dell’Isola et al. (eds.), 2018. – Vol. 87. – 369 p. – P. 35 – 42.
Andrianov I., Starushenko G., Kvitka S., Khajiyeva L. The Verhulst-Like Equations: Integrable OΔE and ODE with Chaotic Behavior. – Symmetry, 2019. – Vol. 11. – Is. 12. – 1446. – 15 p.
Kalamkarov A., Andrianov I., Starushenko G. Refinement of the Maxwell Formula for Fiber-Reinforced Composites. – Journal of Multiscale Modelling, 2020. – 11. – No. 1. – P.1950001-1 – 1950001-33.
Andrianov I. V., Awrejcewicz J., Starushenko G. A., Gabrinets V. A. Refinement of the Maxwell formula for composite reinforced by circular cross-section fibers. Part I: using the Schwarz alternating method. – Acta Mechanica, 2020. – 231. – Is. 12. – P. 4971 – 4990.
Andrianov I. V., Awrejcewicz J., Starushenko G. A., Gabrinets V. A. Refinement of the Maxwell formula for composite reinforced by circular cross-section fibers. Part II: using Padé approximants. – Acta Mechanica, 2020. – 231. – Is. 12. – P. 5145 – 5157.
AndrianovI., Koblik S., StarushenkoG.Transition from discrete to continuous media: the impact of symmetry changes on asymptotic behavior of waves. – Symmetry, 2021. – Vol. 13. – Is. 6. – 1008. – 15
WoS
Andrianov V., Starushenko G. A. Application of the averaging method for the calculation of perforated plates. – Soviet Applied Mechanics, 1988. – Vol. 24. –Is. 4. – P. 410-415.
Pilipchuk V. N., Starushenko G. A. A version of non-smooth transformations for one-dimensional elastic systems with a periodic structure. – Journal of Applied Mathematics and Mechanics, 1997. – Vol. 61. – Is. 2. – P. 265 – 274.
Andrianov I. V., Starushenko G. A., Tokarzewski S. Homogenization procedure and Pade approximations in the theory of composite materials with parallelepiped inclusions. – International Journal of Heat and Mass Transfer, 1998, Vol. 41, No. 1, p. 175-181.
Starushenko G., Krulik N. Saw-tooth argument transformation method in the theory of composite materials. – Progress and Trends in Rheology V: Proceedings of the Fifth European Rheology Conference, Portorož, Slovenia, September 6–11, 1998. – Steinkopff-Verlag Heidelberg, 1998. – P. 120-121.
Starushenko G., Krulik N., Tokarzewski S. About representation of theory tasks periodic solutions on basis of non-smooth argument transformation. – International Journal of Applied Mechanics and Engineering. – Vol. 4, no. spec. – Proceedings of the International Conference on Engineering Rheology ICER '99, Zielona Góra, Poland, June 27-30, 1999. – 468 p. – P. 115-120.
Pilipchuk V. N., Volkova S. A., Starushenko G. A. Study of a non-linear oscillator under parametric impulsive excitation using a non-smooth temporal transformation. – Journal of Sound and Vibration, 1999. – Vol. 222 (2). – P. 307-328.
Andrianov I. V., Starushenko G. A., Danishevskyy V. V., Tokarzewski S. Homogenization procedure and Pade approximants for effective heat conductivity of composite materials with cylindrical inclusions having square cross-section. – Proceeding of Royal Society of London, A, 1999. – Vol. 455. – No. 1989, p. 3401-3413.
Tokarzewski S., Andrianov I., Danishevsky V., Starushenko G. Analytical continuation of asymptotic expansions of effective transport coefficients by Pade approximants. – Nonlinear Analysis: Theory, Methods & Applications. – 2001. – Vol. 47. – Is. 4. – P. 2283-2292.
Starushenko G., Krulik N., Tokarzewski S. Employment of non-symmetrical saw-tooth argument transformation method in the elasticity theory for layered composites. – International Journal of Heat and Mass Transfer, 2002. – Vol. 45. – Is. 14. – P. 3055 – 3060.
Andrianov I. V., Starushenko G. A., Weicher D. Numerical investigation of 1D continuum dynamical models of discrete chain. – ZAMM / Z. Angew. Math. Mech., 2012. – 92. – Is. 11-12. – P. 945-954.
Andrianov I. V., Awrejcewicz J., Starushenko G. A. Application of an improved three-phase model to calculate effective characteristics for a composite with cylindrical inclusions. – Latin American Journal of Solids and Structures, 2013. – 10. – No 1. – P. 197-222.
Andrianov I. V., Kalamkarov L., Starushenko G. A. Three-phase model for a fiber-reinforced composite material. – Composite Structures, 2013. – Vol. 95. – P. 95-104.
Andrianov I. V., Kalamkarov A. L., Starushenko A. Analytical expressions for effective thermal conductivity of composite materials with inclusions of square cross-section. – Composites Part B: Engineering, 2013. – Vol. 50. – P. 44-53.
Kalamkarov L., Andrianov I. V., Starushenko G. A. Three-phase model for a composite material with cylindrical circular inclusions. Part II: Application of Padé approximants. – International Journal of Engineering Science, 2014. – Vol. 78. – P. 178-191.
Kalamkarov L., Andrianov I. V., Starushenko G. A. Three-phase model for a composite material with cylindrical circular inclusions. Part I: Application of the boundary shape perturbation method. – International Journal of Engineering Science, 2014. – Vol. 78. – P. 154-177.
Andrianov I., Awrejcewicz J., Starushenko G. A. Asymptotic analysis of the Maxwell Garnett formula using the two-phase composite model. – International Journal of Applied Mechanics, 2015. – Vol. 7. – Is. 2. – P. 1550025-1 – 1550025-27. – 27 p.
Kalamkarov A. L., Andrianov I. V., Pacheco P. M. C. L., Savi M. A., Starushenko G. A. Asymptotic analysis of fiber-reinforced composites of hexagonal structure. – Journal of Multiscale Modelling, 2016. – Vol. 7. – No. 3. – P. 1650006-1 – 1650006-32.
Andrianov I. V., Awrejcewicz J., Markert B., Starushenko G. A. Analytical homogenization for dynamic analysis of composite membranes with circular inclusions in hexagonal lattice structures. – International Journal of Structural Stability and Dynamics, 2017. – Vol. 17. – No. 5. – P. 1740015-1 – 1740015-14.
Andrianov I. V., Awrejcewicz J., Starushenko G. A. Asymptotic models and transport properties of densely packed, high-contrast fibre composites. Part I: Square lattice of circular – Composite Structures, 2017. – Vol. 179. – P. 617 – 627.
Andrianov I. V., Awrejcewicz J., Starushenko G. A. Asymptotic models for transport properties of densely packed, high-contrast fibre composites. Part II: Square lattices of rhombic inclusions and hexagonal lattices of circular inclusions. – Composite Structures, – Vol. 180. – P. 351 – 359.
Andrianov I. V., Starushenko G. A., Gabrinets A. Percolation threshold for elastic problems: self-consistent approach and Padé approximants. – Advances in Mechanics of Microstructured Media and Structures,Advanced Structured Materials. – Springer International Publishing AG, part of Springer Nature; F. dell’Isola et al. (eds.), 2018. – Vol. 87. – 369 p. – P. 35 – 42.
Kvitka S., Starushenko G., Koval V., Deforzh H., Prokopenko O. Marketing of Ukrainian higher educational institutions representation based on modeling of Webometrics Ranking. – Marketing and Management of Innovations, – Is. 3. – P. 60 – 72.
Andrianov I., Starushenko G., Kvitka S., Khajiyeva L. The Verhulst-Like Equations: Integrable OΔE and ODE with Chaotic Behavior. – Symmetry, – Vol. 11. – Is. 12. – 1446. – 15 p.
Kalamkarov A., Andrianov I., Starushenko G. Refinement of the Maxwell formula for fiber-reinforced composites. – Journal of Multiscale Modelling, 2020. – 11. – No. 1. – P.1950001-1 – 1950001-33.
Andrianov I. V., Awrejcewicz J., Starushenko G. A., Gabrinets V. A. Refinement of the Maxwell formula for composite reinforced by circular cross-section fibers. Part I: using the Schwarz alternating method. – Acta Mechanica, 2020. – 231. – Is. 12. – P. 4971 – 4990.
Andrianov I. V., Awrejcewicz J., Starushenko G. A., Gabrinets V. A. Refinement of the Maxwell formula for composite reinforced by circular cross-section fibers. Part II: using Padé approximants. – Acta Mechanica, 2020. – 231. – Is. 12. – P. 5145 – 5157.
AndrianovI., Koblik S., StarushenkoG.Transition from discrete to continuous media: the impact of symmetry changes on asymptotic behavior of waves. – Symmetry, 2021. – Vol. 13. – Is. 6. – 1008. – 15 p.